CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training
نویسندگان
چکیده
We propose an adversarial training procedure for learning a causal implicit generative model for a given causal graph. We show that adversarial training can be used to learn a generative model with true observational and interventional distributions if the generator architecture is consistent with the given causal graph. We consider the application of generating faces based on given binary labels where the dependency structure between the labels is preserved with a causal graph. This problem can be seen as learning a causal implicit generative model for the image and labels. We devise a two-stage procedure for this problem. First we train a causal implicit generative model over binary labels using a neural network consistent with a causal graph as the generator. We empirically show that WassersteinGAN can be used to output discrete labels. Later, we propose two new conditional GAN architectures, which we call CausalGAN and CausalBEGAN. We show that the optimal generator of the CausalGAN, given the labels, samples from the image distributions conditioned on these labels. The conditional GAN combined with a trained causal implicit generative model for the labels is then a causal implicit generative model over the labels and the generated image. We show that the proposed architectures can be used to sample from observational and interventional image distributions, even for interventions which do not naturally occur in the dataset.
منابع مشابه
Causalgan: Learning Causal Implicit Gener-
We introduce causal implicit generative models (CiGMs): models that allow sampling from not only the true observational but also the true interventional distributions. We show that adversarial training can be used to learn a CiGM, if the generator architecture is structured based on a given causal graph. We consider the application of conditional and interventional sampling of face images with ...
متن کاملFlow-GAN: Combining Maximum Likelihood and Adversarial Learning in Generative Models
Evaluating the performance of generative models for unsupervised learning is inherently challenging due to the lack of well-defined and tractable objectives. This is particularly difficult for implicit models such as generative adversarial networks (GANs) which perform extremely well in practice for tasks such as sample generation, but sidestep the explicit characterization of a density. We pro...
متن کاملVariational Approaches for Auto-Encoding Generative Adversarial Networks
Auto-encoding generative adversarial networks (GANs) combine the standard GAN algorithm, which discriminates between real and model-generated data, with a reconstruction loss given by an auto-encoder. Such models aim to prevent mode collapse in the learned generative model by ensuring that it is grounded in all the available training data. In this paper, we develop a principle upon which autoen...
متن کاملImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملLearning the Base Distribution in Implicit Generative Models
Popular generative model learning methods such as Generative Adversarial Networks (GANs), and Variational Autoencoders (VAE) enforce the latent representation to follow simple distributions such as isotropic Gaussian. In this paper, we argue that learning a complicated distribution over the latent space of an auto-encoder enables more accurate modeling of complicated data distributions. Based o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.02023 شماره
صفحات -
تاریخ انتشار 2017